1,074 research outputs found

    Towards an affordable assistive device for personal autonomy recovery in tasks required of manual dexterity

    Get PDF
    This paper reviews the results of a challenging engineering project that arose with the goal of implementing an electromechanical, automatic, portable, and inexpensive device. The device should be able to assist people who lack of dexterity in their hands to use small tools and everyday utensils, such as scissors or tweezers. In this paper, the hardware development and software functionality are described. The original specifications were developed to implement an affordable functional prototype able to serve as a low-cost assistive technology. Several commonly used electronic devices were integrated to create an innovative application. A simple mechanical system based on gears and a worm screw is used to convert the stepper motor rotation to a linear movement on the device tip. A tool-oriented control to increase the device usability was designed through two simultaneous communication channels: touch-screen and smartphone app. Pilot trials were conducted at healthcare facilities to evaluate the technical feasibility, the obtained functionality, as well as the device acceptance by target users. Based on user experience design, the app functionality was enhanced and subsequently tested. Finally, a review and reformulation of the specifications of the original design were accomplished. These changes helped to achieve a system with a lower manufacturing cost and better acceptance, while considering the user in the development cycle.This work was supported in part by the RoboCity2030-III-CM Project (Robotica aplicada a la mejora de la calidad de vida de los ciudadanos. Fase III; S2013/MIT-2748), in part by the Programas de Actividades I+D en la Comunidad de Madrid, in part by the Structural Funds of the EU, and in part by the private Fundacion Universia

    Detecting Serial Arcs in Aeronautical Applications Using Inductive Sensors

    Get PDF
    There is a clear trend in the aircraft industry to use more electrical systems in propulsion and electromechanical and electrohydraulic actuators to comply with environmental sustainability and to improve reliability and maintenance processes. The increase of electrical consumption requires an increase of the rated voltages to supply power to these so called more electrical aircraft (MEA). Unfortunately, this voltage rise, currently up to 540 Vdc_{dc}, can lead to ionization processes within the electric wiring due to the lower air density at high altitudes. As a consequence, a degraded insulation can create extremely hazardous events in flight such as arcs between wires (serial) or between wires and fuselage (parallel). Serial arcs in dc bus circuits are specially dangerous for the aircraft operation, so its detection within fractions of seconds is required to ensure a reliable operation. However, during a sustained serial arc the rated current can be passing through air deceiving the protections and avoiding their tripping. In this article, it has been found that arcing introduces high frequency current pulses superimposed to the dc component that can be identified to detect the occurrence of an arc. The frequency components of these pulses depend on the line characteristics and can be detected with inductive sensors. This manuscript also designs and tests a light and inexpensive sensor for arc detection in aircraft applications.This work was supported by Airbus DS internal funding and by the Centro de Desarrollo Tecnologico e Industrial (CDTI) of the Spanish Goverment under Contract CDTI-HV-NET/IDI-20190530. Tests have been done in the high-voltage research and test laboratory (LINEALT) at the University Carlos III of Madri

    SOBRE TUTELA E PARTICIPAÇÃO :POVOS INDIGENAS E FORMAS DE GOVERNO NO BRASIL, SÉCULOS XX/XXI

    Full text link

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF

    The evolution of the ventilatory ratio is a prognostic factor in mechanically ventilated COVID-19 ARDS patients

    Get PDF
    Background: Mortality due to COVID-19 is high, especially in patients requiring mechanical ventilation. The purpose of the study is to investigate associations between mortality and variables measured during the first three days of mechanical ventilation in patients with COVID-19 intubated at ICU admission. Methods: Multicenter, observational, cohort study includes consecutive patients with COVID-19 admitted to 44 Spanish ICUs between February 25 and July 31, 2020, who required intubation at ICU admission and mechanical ventilation for more than three days. We collected demographic and clinical data prior to admission; information about clinical evolution at days 1 and 3 of mechanical ventilation; and outcomes. Results: Of the 2,095 patients with COVID-19 admitted to the ICU, 1,118 (53.3%) were intubated at day 1 and remained under mechanical ventilation at day three. From days 1 to 3, PaO2/FiO2 increased from 115.6 [80.0-171.2] to 180.0 [135.4-227.9] mmHg and the ventilatory ratio from 1.73 [1.33-2.25] to 1.96 [1.61-2.40]. In-hospital mortality was 38.7%. A higher increase between ICU admission and day 3 in the ventilatory ratio (OR 1.04 [CI 1.01-1.07], p = 0.030) and creatinine levels (OR 1.05 [CI 1.01-1.09], p = 0.005) and a lower increase in platelet counts (OR 0.96 [CI 0.93-1.00], p = 0.037) were independently associated with a higher risk of death. No association between mortality and the PaO2/FiO2 variation was observed (OR 0.99 [CI 0.95 to 1.02], p = 0.47). Conclusions: Higher ventilatory ratio and its increase at day 3 is associated with mortality in patients with COVID-19 receiving mechanical ventilation at ICU admission. No association was found in the PaO2/FiO2 variation

    Updated cardiovascular prevention guideline of the Brazilian Society of Cardiology: 2019

    Get PDF
    Sem informação113478788
    corecore